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H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Optimized desalination performance is 
obtained by HTMD simulations & ML 
analysis.

• Influence of pore size on water per
meance is revealed from molecular 
level.

• Effect of hydrophilicity on water per
meance is also coupled with pore size.

• Ion rejection of CNTs to NaCl is inter
actively affected by σ, ε, and ΔP.

• ΔP has very little impact on water per
meance as flux rises linearly with it.
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A B S T R A C T

The influence of pore size and hydrophilicity on the permeance of reverse osmosis (RO) membranes has been 
mostly focused. However, their influence is hardly to be clearly identified as these two kinds of factor interfere 
with each other. In this work, high-throughput molecular dynamics (HTMD) simulations with CNTs are used to 
extensively produce the data of water permeance and NaCl rejection. These data are then analyzed by machine 
learning (ML) method to obtain the optimized desalination performance. The HTMD results indicate that the 
pressure drop has little effect on the water permeance. Moreover, rising pore size and degrading hydrophilicity 
will generally boost water permeance but will somehow sacrifice the NaCl rejection. The interference effect 
between pore size and hydrophilicity is also found in this work, the mechanism of which is then revealed from 
molecular level. Additionally, ML is applied to analyze the abundant data of water permeance and NaCl rejec
tion. The optimal conditions are identified to achieve the highest water permeance with 100% NaCl rejection, 
which are also validated via additional MD simulations. This work suggests that the integration of HTMD and ML 
promises the future of designing new kind of RO membranes for better performance.
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1. Introduction

Freshwater scarcity has emerged as a pressing global issue due to 
rapid population growth, industrialization, and the escalating impacts of 
climate change, such as global warming. In response, desalination has 
gained widespread adoption as an effective solution [1–4]. While 
reverse osmosis (RO) technology is the most prevalent method [5–7], it 
faces significant challenges, e.g. high energy consumption [8–10], sus
ceptibility to fouling, and limited lifespan [11]. Carbon nanotubes 
(CNTs) have emerged as a promising alternative following Hummer 
et al.’s discovery of rapid water channels through molecular dynamics 
(MD) simulations [12]. Majumder et al. later confirmed experimentally 
that water flux in CNTs exceeds predictions by the Hagen-Poiseuille 
(HP) equation by three to four orders of magnitude [13].

However, large-scale fabrication of vertically aligned CNTs remains a 
complex and costly endeavor in experimental settings [14]. Although 
the preparation of CNT RO membranes is commercially impractical, 
CNTs have become an ideal material for studying desalination due to 
their simple structure and outstanding water transport performance 
[15–17]. Consequently, computational simulation methods have 
emerged as pivotal tools for investigating desalination of CNTs.

Using CNTs as models, researchers often employ modifications to 
explore how different structural, physical, and chemical properties in
fluence desalination performance. Corry conducted MD simulations by 
modifying functional groups with varying charges and polarities at the 
entrance of (8) CNT pores [18]. These modifications demonstrated that 
altering functional groups at the pore mouth can enhance salt rejection 
through electrostatic and size effects. Similarly, Goldsmith et al. utilized 
MD simulations to adjust the atomic charges of CNTs across different 
pore sizes, revealing that these modifications led to reduced water flux 
compared to unmodified CNTs, though still higher than predicted by HP 
eq. [19].

The hydrophilicity of CNTs can be tailored by adjusting the charge 
on carbon atoms or fine-tuning interactions between carbon and oxygen 
atoms in water molecules. Ebrahimi et al. investigated the influence of 
varying water-CNT wall interaction strength on the spontaneous 
entrance of water into CNTs. They found a direct correlation between 
the distance of oxygen atoms in water molecules near the wall and 
carbon atoms in CNTs, influenced by σ values in the potential function 
[20]. Additionally, Joseph et al. adjusted CNTs’ Lennard-Jones param
eters near silicon to enhance hydrophilicity, resulting in increased water 
transport resistance and markedly reduced water flux [21]. Moreover, 
Wang et al. explored modifications in atomic charges of (12) CNTs for 
hydrophilic enhancements, observing a decrease in water flux post- 
modification compared to unmodified CNTs, though still significantly 
11–21 times higher than predictions from Navier-Stokes eqs. [22].

Based on the findings from above works, we could conclude that the 
adjusting of interaction parameters between oxygen atom in water and 
carbon atom in CNTs can switch the effective pore size and hydrophi
licity of CNTs rapidly. That reminders us that we could conduct high- 
throughput molecular dynamics (HTMD) simulations by adjusting 
interaction parameters in our simulations. HTMD simulations are 
particularly adept at depicting the transport dynamics of water mole
cules and salt ions at the nanoscale, capable of swiftly generating vast 
datasets. With these abundant data, machine learning (ML) algorithms 
subsequently uncover meaningful patterns to predict material effi
ciency. Wang et al. proposed a pioneering approach that melds deep 
reinforcement learning with convolutional neural networks to expedite 
the discovery of graphene nanopores suitable for desalination [23]. 
Meanwhile, Liang et al. have accelerated the assessment of graphene’s 
desalination potential using HTMD coupled with ML techniques [24]. By 
integrating HTMD simulations with ML, researchers can effectively and 
precisely analyze and predict the desalination capabilities of CNTs. This 
cohesive approach not only bypasses the practical limitations of exper
imental methods but also accelerates the discovery and optimization of 
new materials.

In this work, we integrate HTMD and ML techniques to analyze the 
desalination performances of RO membranes based on the CNT models. 
It explores the impacts of pressure drops (ΔP), CNTs pore size and hy
drophilicity on water permeance and ion rejection performance of CNT 
membranes. The extensive HTMD simulations generate comprehensive 
data on water permeance and ion rejection, which are then evaluated 
and predicted using ML methods. For the goal of identifying optimal 
CNTs conditions that achieve 100% ion rejection while maximizing 
permeance, ML algorithms are applied and provide its predictions, 
which are also validated by additional MD simulations. The approach 
applied in this work not only thoroughly examines the influence of ΔP, 
pore size, and hydrophilicity of CNTs on the permeance and desalination 
performance but also introduces novel methodologies for enhancing 
desalination materials.

2. Simulation details

2.1. Construction of models

Taking the (8) CNT model as an example, the simulation configu
ration is shown in Fig. 1. Each simulation consists of four (8) CNTs ar
ranged in a rhombus shape (shown in Fig. 1). The interval between CNTs 
is set to 0.1 nm, which can prevent water and ion from transporting 
membranes via these intervals [25]. The length of the tube is 5 nm. A 
NaCl solution of concentration at 1 mol/L is placed on the left, and a 
reservoir of pure water is placed on the right. The diameters of the (8) 
and (9) armchair-type CNTs correspond to 1.08 nm and 1.22 nm, 
respectively. After subtracting the van der Waals diameter of the carbon 
atoms (0.34 nm), the effective diameters are 0.74 nm and 0.88 nm, 
respectively. The simulation box is rhombic with a side length of 2.51 
nm and a height of 2.17 nm. The size in the z-direction varies with the 
simulation conditions. The axis of the CNTs is parallel to the z-direction, 
and the initial lengths of the two reservoir boxes in the z-direction are set 
to 2.50 nm.

2.2. Simulation methods

All simulations are performed using the large-scale atomic/molecu
lar massively parallel simulator (LAMMPS) program [26]. The CNTs are 
held fixed, and water molecules are modeled using the SPC/E model 
[27], with the SHAKE algorithm used to constrain the bond length and 
bond angle of water molecules to accelerate the simulation speed [28]. 
The cutoff radius for Lennard-Jones (LJ) and electrostatic interactions is 
set to 1.0 nm and 1.2 nm, respectively. Long-range electrostatic forces 
are calculated using the Particle-Particle Particle-Mesh (PPPM) method 
with a precision of 10− 4 [29]. The simulation system exhibited periodic 
boundary conditions in all three directions. The LJ parameters between 
oxygen atoms in water molecules and carbon atoms on the CNTs utilized 
the parameters proposed by Werder et al. with: σC-O = 3.19 Å, εC-O =

0.392 kJ mol− 1 [30]. The parameters for Na+ and Cl− are based on the 
parameters proposed by Joung et al. [31]. All other cross LJ interaction 
parameters are calculated using the Lorentz-Berthelot mixing rule.

The LJ potential function is a commonly used potential energy 
function that describes the interactions between molecules or atoms. It is 
a function of the distance between two atoms, with two parameters σ 
and ε, and its form is as follows: 

V(r) = 4ε
[(σ

r

)12
−
(σ

r

)6
]

(1) 

where r is the distance between two atoms, ε is the depth of the potential 
well, and σ is the distance at which the potential energy between the two 
interacts is exactly zero, typically defined as the closest distance of 
approach between the two atoms.

Each simulation system undergoes an initial energy minimization 
(with a precision of 10− 5) followed by equilibration MD simulations at 
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300 K to ensure that the CNTs are filled with water molecules. Subse
quently, non-equilibrium molecular dynamics (NEMD) simulations are 
performed. Using the “pump method” [32–35], an external force f is 
applied to all oxygen atoms of water molecules within a 1 nm wide re
gion on the left side of the CNTs (the purple area in Fig. 1a), resulting in 
the generation of ΔP. The calculation formula is as: 

f =
ΔPA

n
(2) 

where ΔP is the required pressure difference, A is the surface area of the 
model, and n is the number of water molecules in the selected region. 
The value of ΔP ranges from 100 to 300 MPa, significantly higher than 
the experimental ΔP, as the higher ΔP enhances signal-to-noise ratio and 
speeds up the simulation process [36,37]. The system temperature and 
pressure are controlled at 300 K and 300 MPa, respectively, using the 
Nosé-Hoover thermostat and Parrinello-Rahman barostat, while 
removing the influence of the particle center-of-mass velocity on tem
perature. The NEMD simulation duration is 3 ns with a time step of 1 fs. 
The initial 1 ns is dedicated to achieving system equilibrium, while the 
subsequent 2 ns are used for calculating flux and rejection data.

When computing the self-diffusion coefficient of water molecules 
within the nanopores, ions and water boxes outside the pores are 
excluded, and the nanopores are filled with water molecules. The 
simulation box size is set to match the dimensions of the CNTs, with 
periodic boundary conditions applied in all three directions. The simu
lation runs for 2 ns under the NVT ensemble, with a time step of 1 fs, and 

trajectory files are collected.

2.3. HTMD simulation

The HTMD simulation method, which is employed in this work, of
fers significant computational speed advantages over traditional MD 
simulations, enabling the completion of simulation tasks in a shorter 
time. Its highly automated workflow significantly simplifies operational 
steps and facilitates the straightforward handling of large-scale simu
lation data, providing a more comprehensive information basis for 
further analysis [38].

Fig. 2 illustrates the implementation of high throughput computation 
based on LAMMPS. By adding two conditional statements in the input 
file, it is possible to respectively modify σ and ε for carbon atoms in CNTs 
and oxygen atoms in water, to adjust the pore size and hydrophilicity of 
CNTs, respectively. For each simulation, we firstly define initial values, 
then read the model and perform equilibrium MD simulations. After that 
we perform NEMD to generate trajectory files and flux data of water and 
ions. Finally, we reset all parameters to the initial state using the “clear” 
command.

The HTMD simulations are performed by a double loop. In the inner 
loop, the variation of ε is adjusted, where ε values range from e/8 to 8e 
(where e = εC-O = 0.392 kJ mol− 1). ε is doubled from one to the other. 
After 7 loops, ε reaches 8e. Subsequently, the outer loop for σ is per
formed, with ε reset to the initial value e/8. The σ range changes for (8) 
CNTs from 2.19 Å to 4.99 Å and for (9) CNTs from 2.59 Å to 4.99 Å, 

Fig. 1. Schematic diagram of the simulation model: (a) Simulation model of water molecules transporting in the (8) CNTs. External force is applied to the water 
molecules within the purple area. (b) Rhombic arrangement diagram of CNTs. (c) Perspective arrangement diagram of CNTs. All elements are labeled in the legend.
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increasing σ by 0.2 Å each iteration. By the double-loop simulations, at 
least 91 sets of data are obtained for one submission.

3. Results and discussion

3.1. The influence of ΔP on permeance

HTMD simulations are employed to investigate the permeance and 
NaCl rejection performance of two types of CNTs, (8) and (9), under ΔP 
of 100, 200, and 300 MPa. After HTMD simulations, 270 and 234 sets of 
valid data are obtained for (8) and (9) CNTs, respectively, which can 
serve as the database for the subsequent ML section. The permeance of 
water in these CNTs is depicted in Fig. 3. It is evident from the graph that 

water molecules exhibit high permeance primarily in regions with 
smaller σ and ε values. Moreover, increasing ΔP does not lead to sig
nificant changes in permeance. Since permeance is calculated by 
dividing water flux by ΔP, we plot the dependence of flux on ΔP as 
shown in Fig. 4. Three different σ values are selected for (8) and (9) 
CNTs, and their dependence of water flux on ΔP exhibits a linear rela
tionship passing through the origin. This finding precisely aligns with 
Darcy’s law, indicating that ΔP takes little effect on the permeance.

After excluding the influence of ΔP, we then focus on the effects of 
pore size (σ) and hydrophilicity (ε) variations on the permeation and salt 
rejection performance of CNTs. Consequently, the variation of water 
molecule permeance with σ and ε is plotted for (8) and (9) CNTs (shown 
in Fig. 5), in which ΔP of 100 MPa is selected. The permeance of water 
molecules gradually increases overall as the pore size increases (drop of 
σ). However, this increase is not strictly monotonic. Such phenomena 
will be discussed in subsequent sections. Additionally, as hydrophilicity 
increases (ε increases), the permeance of water molecules shows a 
monotonically decreasing trend. As the hydrophilicity promotion ele
vates the mass transport resistance of water molecules across the CNTs, a 
decrease in permeance is obtained [39]. In the coming sections, we will 
then analyze the influence of pore size and hydrophilicity on permeance 
one by one and then consider these two factors together by ML.

3.2. The impact of pore size on permeance

The influence of varying pore size (σ) on the permeance of both types 
of CNTs is investigated while keeping ε unchanged. Taking ε = e as an 
example, it’s evident that changing σ has a significant impact on per
meance (as shown in Fig. 6). In the case of (8) CNTs, when σ decreases 
from 4.79 to 2.99 Å, the permeance remains around 1000 L/(m2 h bar) 
(LMHB). However, as σ decreases further to 2.39 Å, the permeance 
rapidly increases from 1360.18 to 5967.40 LMHB. Similarly, for (9) 
CNTs, when σ decreases from 4.79 to 3.39 Å, the permeance stays 
around 1000 LMHB. Yet, as σ decreases further to 2.79 Å, the permeance 
rapidly increases from 1190.29 to 5011.19 LMHB. Summarizing the 
permeance trends of these two types of CNTs, it can be observed that 
with an increase in σ, the permeance initially drops sharply, followed by 
oscillatory decreases. Such phenomena were also found by other simu
lation works [40]. The oscillatory permeance of water as a function of 
pore size was also observed in experimental works [41].

In order to further clarify the factors influencing permeance, the LJ 
potential function in Eq. (1) is analyzed. In the potential energy 

Fig. 2. Flowchart of the HTMD simulation running in LAMMPS.

Fig. 3. Variation of permeance of (8) and (9) CNTs in high-throughput molecular dynamics simulations with respect to ΔP, σ, and ε.
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function, σ is a length parameter representing the distance between two 
atoms where the potential energy is at its minimum, indicating the 
closest distance between the two atoms, such as between C and O. Six 
different σ values are selected for (8) (Fig. 7a) and (9,9) (Fig. 7b) CNTs to 
examine the variation in the diameter of water rings formed by internal 
oxygen atoms.

For the CNTs with similar pore size, the water molecules form a 

structure like a ring inside CNTs [42]. In (8) CNTs of this work, as σ 
increases from 2.79 to 4.79 Å, the diameter of the internal water ring 
decreases from 7.5 to 4.3 Å. The diameter of the water ring inside both 
types of CNTs decreases with increasing σ, indicating that changing σ 
can alter the effective diameter of the CNTs. When σ increases, the 
minimum distance between C and O increases, corresponding to a 
decrease in the effective diameter of the CNTs and thus a reduction in 
the diameter of the water ring formed inside them. Such reduction will 
consequently lead to the decreased water permeance.

When the diameter of the water ring is larger than 6.1 Å, an addi
tional density peak appears inside the water ring, indicating a transition 
in the water molecule structure from one-ring configuration to “ring +
dot” structure inside the CNTs. This is a result of the increased water 
density. In Fig. 7, the diameter of the water ring decreases as σ increases, 
and the color of the water ring becomes darker as σ increases, indicating 
that changing σ affects the structure of water molecules as well as their 
number inside CNTs.

Figs. 8 show the variation in the number of water molecules inside 
two types of CNTs with changing σ, while keeping ε constant. In the (8) 
CNTs, as σ increases from 2.39 to 4.79 Å, the number of water molecules 
decreases from 461 to 89. The planar density of water molecules, 
calculated based on the diameter of the water ring, increases from 2.99 
to 4.19 #/Å2 while σ increases from 2.39 to 3.19 Å, and then oscillates 
around 4.5 #/Å2 as σ continues to increase from 3.39 to 4.79 Å (shown 
in Fig. 8a). In the (9) CNTs, as σ increases from 2.79 to 4.79 Å, the 
number of water molecules decreases from 537 to 228. The planar 
density of water molecules increases from 3.04 to 4.01 #/Å2 while σ is 
no larger than 3.59 Å, and then oscillates around 4 #/Å2 as σ continues 
to increase from 3.59 to 4.79 Å (shown in Fig. 8b).

Fig. 4. Water flux of (8) (a) and (9) CNTs at different σ under various pressures.

Fig. 5. Permeance of (8) and (9) CNTs as a function of σ and ε at 100 MPa.

Fig. 6. Permeance variation curves of (8) and (9) CNTs as a function of σ.
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For both types of CNTs, the number of water molecules gradually 
decreases with increasing σ. Additionally, the planar density of water 
molecules initially increases and then oscillates with increasing σ. This 
explains the reason for the color of the water ring in Fig. 7 decreases first 
and then remains unchanged with the increase of σ.

In order to further investigate the reason for varying diameters of 
water rings, we then focus on the microstructure of water ring inside 
CNTs. Thomas et al. demonstrated that water molecules exhibit stacked 
pentagonal structures in (8) CNTs and stacked hexagonal arrangements 
in (9) CNTs [42]. In Fig. 9a, for (8) CNTs, at σ = 2.39 Å, water molecules 
inside CNTs show disordered bulk water structures. At σ = 2.79 and 
3.19 Å, water molecules inside CNTs exhibit stacked pentagonal struc
tures. They become stacked tetrahedral structures at σ = 3.59 Å, trian
gular structures at σ = 3.99 Å, and double water chains at σ = 4.39 Å.

In Fig. 9b, for (9) CNTs, at σ = 2.79 Å, water molecules inside CNTs 
show disordered bulk water structures, indicating that the exchange of 
water between “ring” and “dot” is frequent. At σ = 3.19 Å, water mol
ecules inside CNTs display stacked hexagonal structures with a single 
water chain at the center of the water ring. At σ = 3.59 Å, they exhibit 
stacked hexagonal structures. They become stacked pentagonal struc
tures at σ = 3.99 Å, tetrahedral structures at σ = 4.39 Å, and triangular 
structures at σ = 4.79 Å. This indicates that the number of water chains 
formed inside CNTs decreases with increasing σ while ε is kept constant.

Comparing Figs. 8 with Fig. 6, the sharp decrease of water per
meance cannot be explained by the water density inside CNTs. We then 
calculate the flow rate of water molecules inside CNTs (shown in 
Fig. 10a). In the (8) CNTs, as σ increases from 2.39 to 2.79 Å, the flow 
rate of water decreases from 2.75 to 1.12 m/s, and then oscillates around 
1.4 m/s as σ continues to increase. In the (9) CNTs, as σ increases from 
2.79 to 3.59 Å, the flow rate of water decreases from 3.39 to 0.89 m/s, 
and then oscillates around 1.3 m/s as σ continues to increase. This trend 
is similar to that in Fig. 6, although the fluctuations are significant here.

Considering that permeance is influenced not only by the flow rate of 

Fig. 7. The xy-plane density maps for oxygen atoms of water inside CNTs of (8) 
and (9) CNTs at different σ values.

Fig. 8. The number of water molecules inside (8) (a) and (9) (b) CNTs as a function of σ.

Fig. 9. Structures of water molecules at different σ values in single-walled (8) 
(a) and (9) (b) CNTs.
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water molecules inside CNTs but also by the number of water molecules 
inside them. Fig. 10b shows the coupled variation in the number and 
flow rate of water molecules inside the two types of CNTs with changing 
σ, demonstrating a similar trend with the results of permeance (Fig. 6), 
that is a sharp initial decrease followed by oscillations. This indicates 
that flow rate has a significant impact on water permeance compared to 
the density of water inside CNTs.

Combining with the microstructure analysis above, reducing σ makes 
the interior space of CNTs more spacious, allowing water molecules to 
flow more freely inside CNTs and facilitating the formation of more 
water chains, thereby increasing permeance. Conversely, increasing σ 
narrows the flow space inside CNTs, restricting the flow of water mol
ecules inside CNTs, making it difficult for water molecules to form more 
water chains, thereby reducing permeance. This phenomenon explains 
why the number of water molecules inside CNTs decreases with 
increasing σ (Fig. 8), and the diameter of the water ring decreases with 
increasing σ (Fig. 7).

3.3. The influence of hydrophilicity on permeance

In the LJ potential function, another factor, hydrophilicity (ε), also 
affects the permeance. Fig. 11 illustrates the variation in permeance as ε 
increases from ε/8 to 8ε, with three different σ values selected for each 
type of CNTs. In the cases of (8) CNTs with σ values of 2.79, 3.39 and 
3.59 Å, the permeance reaches its maximum at ε = e/8, with values of 
5742.11, 3630.48 and 2577.12 LMHB, respectively. As ε increases, the 
permeance gradually decreases, reaching its minimum at ε = 8e, with 
values of 109.55, 35.08 and 50.28 LMHB, respectively (Fig. 11a). 
Similarly, for (9) CNTs with σ values of 2.99, 3.39 and 4.19 Å, the 
maximal permeance also locates at ε = e/8, with values of 6300.27, 
3485.46 and 2025.19 LMHB, respectively. As ε increases, the permeance 
gradually decreases, reaching its minimum at ε = 8e, with values of 
172.35, 8.96 and 77.98 LMHB respectively (Fig. 11b). For both types of 
CNTs, as ε rises from e/8 to 8e, the permeance gradually decreases.

Due to the more pronounced decrease in permeance with increasing 
ε in (8) CNTs with σ of 3.59 Å and (9) CNTs with σ of 3.39 Å, we select 
these two σ values for further investigation of ε effect on water per
meance. Firstly, we examine whether changing ε would affect the 
diameter of the water cluster inside CNTs.

Fig. 12 displays the density map of oxygen atoms of water in the xy- 
plane inside CNTs for different ε in the two types of CNTs. In both (8) 
and (9) CNTs with σ values of 3.59 and 3.39 Å, respectively, it is 
observed that the diameter of the water cluster inside CNTs remains 
unchanged at 4.6 and 6 Å, respectively, while ε increases from ε/8 to 8ε. 
Therefore, changing ε does not impact the diameter of the water cluster 
inside CNTs. However, as ε increases, the color of the water cluster gets 
darker in Fig. 12, indicating a higher density of water inside CNTs.

The variation curves of the number and density of water molecules 
inside CNTs of the two types of CNTs with respect to ε is illustrated in 
Fig. 13. The plane density of water molecules inside CNTs is calculated 
based on the diameter of the water cluster. In (8) CNTs with σ fixed at 
3.59 Å, the number of water molecules inside CNTs gradually increases 
from 262 to 357, and the plane density of water molecules increases 
from 4.14 to 5.37 #/Å2 while ε increases from ε/8 to 8ε. In (9) CNTs, 
when ε increases from ε/8 to 8ε with σ fixed at 3.39 Å, the number of 
water molecules inside CNTs gradually increases from 381 to 577, and 
the plane density of water molecules consequently increases from 3.35 
to 5.1 #/Å2. The number and plane density of water molecules inside 
both types of CNTs increase with increasing ε, explaining the darkened 
color of the water cluster in Fig. 12 with the increased ε. However, 
excessively high plane density of water molecules can increase the 
interaction forces between them, thereby increasing the resistance to 
motion inside the channel and leading to a decrease in permeance. This 
is consistent with the decrease in permeance shown in Fig. 11 as ε 
increases.

According to Werder et al.’s research, the hydrophilicity of the 
nanopores can be adjusted by keeping σ constant and altering the ε 
values of carbon atoms on the CNTs and oxygen atoms in water mole
cules [30]. Moreover, the changes in hydrophilicity have a significant 
impact on dynamic properties of water molecules inside nanotubes 
[19,22,43,44]. Consequently, it is possible to examine the effect of ε on 
the nanopore’s hydrophilicity by analyzing the dynamic properties of 
water inside CNTs with varying ε. By analyzing the self-diffusion coef
ficient of water molecules along the z-axis (Dz), the dynamic behavior of 
water molecules inside CNTs can be characterized, indirectly measuring 
the hydrophilicity of the nanopores. To compute Dz, it is necessary to 
measure the mean squared displacement (MSD) of water molecules 
within the nanopores along the z-axis for all ε values, and then calculate 
Dz using the following formula: 

Dz =
lim
t→∞

MSDz

2t
(3) 

Fig. 10. The flow rate of water molecules (c), and the product of the number and flow rate of water molecules (d) as a function of σ.

Fig. 11. The variation of permeance with ε for (8) (a) and (9) (b) CNTs at 
different σ values.
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Figs. 14a&b present the ε-dependent MSDz for (8) and (9) CNTs, 
respectively. The MSDz plots exhibit linearity, while their slopes grad
ually decreasing as ε increases. Figs. 14c&d demonstrate the calculated 
Dz decreases with rised ε, suggesting that higher ε values enhance the 

hydrophilicity of CNTs. This results in increased resistance for water 
molecules passing through the CNTs, thereby reducing permeance, 
which aligns with findings in the literature [21]. The observation aligns 
with the phenomenon observed in Fig. 11, where permeance decreases 

Fig. 12. The ε-dependent xy-plane density maps for oxygen atoms of water inside CNTs of (8) and (9) CNTs with σ values of 3.59 and 3.39 Å, respectively.

Fig. 13. Variation of the number and density of water molecules inside CNTs of (8) and (9) CNTs with respect to ε.
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as ε increases.
Unlike (8) CNTs, the structure of water molecules in (9) CNTs 

changes with various ε. In some cases, the structure of water molecules is 
no longer a single-ring structure, but instead exhibits “ring+dot” 
structure. This structural change is not only related to ε, but also de
pends on the value of σ. Therefore, the microstructure of water mole
cules in CNTs is the result of the coupled effects of both σ and ε. It is 
necessary to study the coupling effect of these two factors. The relevant 
research will adopt ML methods for analysis in Section 3.5.

3.4. The influence of σ, ε and ΔP on ion rejection

Before introducing the findings from ML, we prefer to presenting the 
simulation results of ion rejections for all cases. Ion rejection (R) is 
usually defined as: 

R = 1 −
cp

cf
(4) 

where cp and cf represent the ion concentrations on the feed side and 
permeate side, respectively. Herein, R of 100% means that the ions 
cannot pass through the CNTs, while R of 0 indicates that the ion con
centration on the permeate side is equal to that on the feed side. In the 
pump method, due to the existence of periodic boundaries, there is no 
clear boundary between the feed side and the permeate side, and R can 
be calculated by: 

R = 1 −
Fi

Fw

/
ni

nw
(5) 

where Fi and Fw represent the ion and water flux, respectively. Fi and Fw 
are calculated by counting the numbers of ions and water molecules 

passing through the CNTs during a certain simulation period. ni and nw 
represent the total number of ions and water molecules in each simu
lation case. It can be seen from Eq. (5) that R is closely related to water 
flux and ion flux. Since changes in σ and ε have a significant impact on 
permeance of water and ion, changing σ and ε will also have an impact 
on ion rejection.

Figs. 15a&b shows the variation of NaCl rejection in two types of 
CNTs with ε and σ. In (8) CNTs, while ε increases from e/8 to e/2 with σ 
kept at 2.79 Å, the NaCl rejection increases from 58.24% to 100%. As ε 
continues to increase, the rejection remains at 100%. In (9) CNTs, while 
ε increases from e/8 to e with σ kept at 3.19 Å, the NaCl rejection in
creases from 20.81% to 100%. As ε continues to increase, the rejection 
remains at 100% (Fig. 15a). Therefore, when ε increases from e/8 to 8e, 
the NaCl rejection gradually increases and then remains at 100%. Xu 
et al. have demonstrated that an increase in the hydrophilicity of the 
channels is beneficial for enhancing the rejection performance [32].

Since ion rejection is also influenced by pore size [8], and changing σ 
can change the effective diameter of CNTs, the impact of σ on R is 
examined. In (8) CNTs, when σ increases from 2.39 to 2.59 Å with ε kept 
at e, the rejection increases from 22.03% to 100%. As σ continues to 
increase, the rejection remains at 100%. In (9) CNTs, when σ increases 
from 2.79 to 3.39 Å with ε kept at e, the rejection increases from 37.97% 
to 100%. As σ continues to increase, the rejection remains at 100% 
(Fig. 15b). Therefore, when σ increases from 2.19 to 4.99 Å, the NaCl 
rejection gradually increases and then remains at 100%. When σ in
creases, the effective diameter of CNTs decreases and the diameter of the 
water ring inside the channel decreases, leading to a decrease in per
meance but making ion passage through CNTs more difficult, thereby 
increasing the rejection.

Figs. 15c&d show the NaCl rejection as a function of ΔP for (8) and 
(9) CNTs under three different σ and ε conditions. As ΔP increases from 

Fig. 14. Mean square displacement and self-diffusion coefficients of water molecules along the z-direction inside the nanotubes with (a and c) (8) and (b and d) (9) at 
different ε.
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100 to 300 MPa, the NaCl rejection of both types of CNTs gradually 
decreases. This is consistent with the findings of Zhang et al., indicating 
that ion rejection decreases with increasing ΔP [45].

It is evident that ion rejection is simultaneously affected by σ, ε and 
ΔP. Subsequently, we then adopt a ML method to analyze the influence 
of the above three factors on permeance and rejection and find the 
optimal permeance when the rejection remains at 100%.

3.5. ML predicts optimal values

This work employs a two-step model combination approach, using 
Extreme Trees Regressor (ETR) and Gradient Boosting Classifier (GBC) 
to predict the highest permeance corresponding to a 100% ion rejection 
based on the permeance data obtained from HTMD calculations. Fig. 16
illustrates the process flow using σ, ε and ΔP as input features. In the 
process, ETR is first used to predict permeance, and the predicted per
meance data from this model is used as one of the input features for GBC 
to predict the ion rejection using binary classification. A positive value is 
output for permeance when the ion rejection reaches 100%, otherwise a 
negative value is output to ensure that the optimization algorithm will 
discard parameters where the ion rejection does not reach 100%.

After the predictions are made, with permeance prediction from ETR 
and ion rejection prediction from GBC, these results are input into the 
Differential Evolution (DE) algorithm. DE then randomly generates 
input parameters σ, ε, and ΔP for ETR and GBC predictions. The per
meance values are first evaluated. If the permeance is positive, it then 
checks whether the ion rejection is 100%. If the ion rejection is 100%, 
the current parameters are output; if not, DE adjusts the input param
eters and recalculates permeance and ion rejection using ETR and GBC 
until a parameter combination that meets the criteria is found. If the 
permeance is negative, the parameters are adjusted directly and recal
culated iteratively until the optimal solution is found.

This process not only improves the accuracy of predicting permeance 
and ion rejections under constrained conditions but also identifies the 
optimal operational conditions in practical applications through the 

optimization algorithm, providing effective methodological support for 
research and applications in related fields.

Using 70% of the data from the database as the training set for initial 
model construction, and the remaining 30% of the data is used as the test 
set to evaluate the model’s predictive performance. Fig. 17 evaluates the 
predictive results of the ETR and GBC models. In line with numerous 
literature sources [46–48], the coefficient of determination (R2) is uti
lized to evaluate the goodness of fit for ETR, achieving an R2 of 0.961 
(Fig. 17a), indicating effective predictive capability of the model for 
permeance. For the GBC model, following the methods in literature 
[49–51], performance in binary classification is evaluated using metrics 
such as accuracy, recall, and false positive rate (FPR) calculated from the 
confusion matrix. The classification threshold is set at 0.5, with ion re
jections of 100% labeled as 1 (positive instances) and those below 100% 
labeled as 0 (negative instances). The results show that the model ach
ieves a classification accuracy of 93.4% on the test set, with a recall of 
0.98 and an FPR of 0.18. These performance metrics indicate that the 
GBC model performs well in this binary classification task (Fig. 17b).

The highest water permeance at 100% ion rejection in the existing 
data for (8) and (9) CNTs, the ML prediction those, and those by addi
tional verification MD simulations are plotted in Fig. 18a. For the data 
obtained from HTMD, the (8) CNTs exhibit a maximum permeance of 
3630.48 LMHB at 100% rejection, obtained at ΔP of 100 MPa, σ of 3.39 
Å and ε of e/8. Similarly, the (9) CNTs show a maximum permeance of 
2768.6 LMHB at 100% rejection, obtained at ΔP of 100 MPa, σ of 3.99 Å 
and ε of e/8. After prediction using EL and DE, the (8) CNTs achieve a 
permeance of 3653.5 LMHB at 100% rejection, obtained at ΔP of 110.94 
MPa, σ of 3.12 Å and ε of e/7.49. For the (9) CNTs, the predicted per
meance at 100% rejection is 3515.18 LMHB, obtained at ΔP of 112.47 
MPa, σ of 3.71 Å and ε of e/7.68. Such prediction demonstrates that the 
strongly hydrophobic channel will promote the water permeance at the 
pore size around 10 Å, which is also found in the experimental work of 
Itoh et al. [52].

The ML predicted results are higher than those obtained from HTMD, 
warranting the verification of the ML results for accuracy. Using the 

Fig. 15. NaCl rejection performance as a function of ε (a), and σ (b) while ΔP is 100 MPa. NaCl rejection performance as a function of ΔP for (8) (c) and (9) (d).
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same simulation method, the predicted ΔP, σ and ε from ML are verified 
through additional MD simulations. The results indicate that under the 
predicted conditions from ML, both (8) and (9) CNTs achieve 100% ion 
rejection, with permeabilities of 3639.89 and 3508.95 LMHB, respec
tively. These values are higher than those from HTMD, but a little lower 
than the ML predictions by only 0.37% and 0.18%, respectively. This 
demonstrates the high accuracy of the ML model and its high feasibility.

Finally, the SHAP (SHapley Additive exPlanations) values are 
calculated to assess the impact of σ, ε and ΔP on permeance. SHAP is a 
method for explaining the predictions of ML models based on coopera
tive game theory and it can calculate the contribution of each feature to 
the model’s prediction. Fig. 18b shows the SHAP values for the two types 
of CNTs, revealing that the permeance of both types of CNTs is most 
significantly influenced by σ, accounting for 53.19% and 58%, respec
tively. The influence of ε is secondary, at 45.73% and 40.84%, respec
tively. The impact of ΔP on permeance is minimal, at 1.08% and 1.16%, 
respectively. This indicates that σ is the primary factor determining 
permeance.

In SHAP analysis of rejection, it is found that for (8) CNTs, the 
rejection is most influenced by σ, accounting for 49.44%, followed by ε 
at 36.22%, with ΔP having the smallest impact at 14.34%. For (9) CNTs, 
the rejection is most influenced by ε, making up 48.73%, followed by σ 
at 35.78%, with ΔP having the smallest impact at 15.49%. This indicates 
that the ion rejection is more significantly affected by σ for CNTs with 
smaller diameters, while it is more significantly affected by ε for CNTs 
with larger diameters.

4. Conclusions

By conducting HTMD simulations on (8) and (9) CNTs, it is found 
that altering the pore size and hydrophilicity of CNTs significantly af
fects permeance and ion rejection. The number of water chains formed 
by intra-CNTs water molecules decreases with reduced pore size 
(increasing σ). Decreasing σ (σ < σC-O = 3.19 Å) effectively alters per
meance, with permeance increasing as σ decreases and ion rejection also 
increases. Altering ε can effectively change the hydrophilicity of the 
pore, with hydrophilicity increasing of rising ε. The promoted hydro
philicity results in decreased permeance and increased ion rejection. 
Additionally, increasing ε leads to a rise in water molecule density 
within the pore, increasing water molecule transport resistance and 
reducing the permeance. Finally, using a two-step model combination 
method of ML to predict the highest permeance when ion rejection is 
100%, the ML prediction results are highly consistent with simulation 
data. Furthermore, by evaluating the impact of σ, ε and ΔP on per
meance using SHAP values, it is found that σ is the primary determinant 
of permeance, followed by ε, while ΔP has very little impact.
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